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Abstract 

The development of glacier karst at the margins of melting ice sheets produces 

complex glaciofluvial sediment-landform assemblages that provide information on ice 

sheet downwasting processes. We present the first combined geomorphological, 

sedimentological and geophysical investigation of the Brampton Kame Belt, an 

important glaciofluvial depositional zone at the centre of the last British-Irish Ice Sheet. 

Ground-penetrating radar (GPR) data allow the broad scale internal architecture of 

ridges (eskers) and flat-topped hills (ice-walled lake plains) to be determined at four 

sites. In combination with sediment exposures, these provide information on lateral 

and vertical variations in accretion styles, depositional boundaries, and grain size 

changes. Building on existing work on the subject, we propose a refined model for the 

formation of ice-walled lake plains resulting from the evolution and collapse of major 

drainage axes into lakes as stable glacier karst develops during deglaciation. The 

internal structure of esker ridges demonstrates variations in sedimentation that can be 

linked to differences in ridge morphologies across the kame belt. This includes low 

energy flow conditions and multiple accretion phases identified within large S-N 
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oriented esker ridges; and fluctuating water pressures, hyperconcentrated flows, and 

significant deformation within a fragmented SW-NE oriented esker ridge. In 

combination with updated geomorphological mapping, this work allows us to identify 

two main styles of drainage within the kame belt: (1) major drainage axes aligned 

broadly S-N that extend through the entire kame belt and collapsed into a chain of ice-

walled lakes; and (2) a series of smaller, fragmented SW-NE aligned esker ridges that 

represent ice-marginal drainage as the ice sheet receded south-eastwards up the Vale 

of Eden. Our study demonstrates the importance of integrated geomorphological, 

sedimentological and geophysical investigations in order to understand complex and 

polyphase glaciofluvial sediment-landform assemblages.   

 

Key words: Kame, glaciofluvial, geomorphology, sedimentology, ground-penetrating 

radar (GPR), British-Irish Ice Sheet 

 

Introduction  

Ice sheet downwasting and recession leads to the deposition of large zones of ice-

contact glaciofluvial and glaciolacustrine sediment-landform assemblages. These 

assemblages are often given the general term ‘kames’ or ‘kame belts’ and are formed 

where sediment and meltwater accumulates in interlobate locations and/or areas 

constrained by local or regional topography (Curtis and Woodworth, 1899; Flint, 

1928a,b, 1929; Cook, 1946; Holmes, 1947; Winters, 1961; Rieck, 1979; Warren and 

Ashley, 1994; Thomas and Montague, 1997; Mäkinen, 2003; Livingstone et al., 2010a; 

Evans et al., 2017). Kame belts are characterised by large volumes of sands and 

gravels and a complex geomorphology of ridges, mounds, flat-topped hills, 



  
 
 Accepted 26th June 2019 for publication in Earth Surface Processes and Landforms  

3 
 

depressions, and meltwater channels (Woodworth, 1894; Cook, 1946; Holmes, 1947; 

Winters, 1961; Huddart, 1981; Malmberg Persson, 1991; Auton, 1992; Attig and 

Clayton, 1993; Thomas and Montague, 1997; Johnson and Clayton, 2003; Livingstone 

et al., 2010a; Schaetzl et al., 2013; Attig and Rawling III, 2018). The complex 

sediment-landform assemblage originates from the development of a glacier karst 

system formed by extensive supra-, en- and subglacial channel networks and 

supraglacial ponding, fed by increased meltwater production during ice sheet 

recession (Clayton, 1964; Price, 1969; Huddart, 1981; Brodzikowski and van Loon, 

1991; Bennett and Evans, 2012). Understanding the genesis of the various elements 

that comprise complex kame topography is crucial to reconstructing ice-marginal and 

interlobate environments, and deciphering the pattern, style and pace of deglaciation 

and ice sheet wastage (Warren and Ashley, 1994; Thomas and Montague, 1997; 

Livingstone et al., 2010a).  

The Brampton Kame Belt is located in the central sector of the last (Late 

Devensian) British-Irish Ice Sheet (Fig. 1). At ~44 km2, it is one of the largest areas of 

glaciofluvial sediment deposition in the UK (Livingstone et al., 2008). The kame belt 

formed between the Penrith sandstone outcrop and north Pennine escarpment during 

deglaciation as the Tyne Gap Ice Stream receded westwards across the Solway 

Lowlands and Vale of Eden ice receded south-eastwards (Trotter, 1929; Huddart, 

1981; Livingstone et al., 2010a,b, 2015). A minimum age of 15.7 ± 0.1 cal. ka BP for 

deglaciation of the kame belt was presented by Livingstone et al. (2015), based on 

radiocarbon dating of organic sediment in a core taken from the Talkin Tarn kettle lake 

(Fig. 2A). The kame belt comprises a series of ridges, mounds, flat-topped hills, and 

depressions (Trotter, 1929; Huddart, 1981; Livingstone et al., 2010a), and is the 

downstream extension of a series of subglacial and lateral meltwater channels 
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extending SE-NW along the lower slopes of the Pennine escarpment (Trotter, 1929; 

Arthurton and Wadge, 1981; Greenwood et al., 2007; Livingstone et al., 2008). Aided 

by insights into the sedimentary composition provided by borehole records and 

sections in sand and gravel quarries, Huddart (1981) and Livingstone et al. (2010a) 

interpreted the ridges as eskers originating from sub-, en- and supraglacial meltwater 

channels; the flat-topped hills as ice-walled lake plains; and the depressions as kettles. 

Formation during deglaciation was time-transgressive, with polyphase and polygenetic 

landform and sediment deposition controlled by the evolution of an enlarging glacier 

karst, and by extensive reworking and fragmentation during topographic inversion 

(Livingstone et al., 2010a). 

The widespread availability of high-resolution digital elevation models (DEMs) 

has enabled the complex topography of some kame deposits to be mapped in detail 

(e.g. Livingstone et al., 2010a; Schaetzl et al., 2017). However, establishing process-

form relationships for the range of different landforms based on their internal 

sediments is more challenging, given the sparse distribution and single point nature of 

sedimentological data. A number of studies have instead conducted geophysical 

investigations using ground-penetrating radar (GPR) to provide information on 

subsurface sedimentary architecture in glacial environments (Woodward and Burke, 

2007), often where suitable sediment exposures are limited or absent (e.g. Busby and 

Merritt, 1999; Cassidy et al., 2003; Sadura et al., 2006; Lukas and Sass, 2011; Pellicer 

and Gibson, 2011; Spagnolo et al., 2014). 

In this study, we use GPR and sedimentological data to investigate the 

sedimentary architecture of the Brampton Kame Belt. The information on internal 

structure is combined with updated mapping from a high-resolution DEM to provide a 
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new appraisal of the kame belt and refine existing models for the formation of complex 

glaciofluvial assemblages.   

 

Methods 

Geomorphological mapping 

Mapping was conducted within a GIS on hillshaded DEMs following the suggestions 

of best practice outlined in Chandler et al. (2018). Two mosaiced DEMs were used: a 

1 m resolution digital surface model (DSM) provided by the Environment Agency from 

airborne LiDAR data (available via environment.data.gov.uk/ds/survey), and a 5 m 

resolution NEXTMap DSM provided by the British Geological Survey for NERC from 

airborne Interferometric Synthetic Aperture data (available via ceda.ac.uk). The 1 m 

DSM was used for the majority of the mapping, with the 5 m DSM providing coverage 

for a small strip missing from the 1 m DSM. Similar to Livingstone et al. (2010a), 

mapping focused on the identification of key landforms based on morphological 

characteristics: ridges and mounds (mapped as polygons) with ridge crest lines 

(mapped as lines); flat-topped hills (polygons); depressions (polygons); and channels 

(lines).  

 

Sedimentology 

Sedimentological investigations, where possible, were used in conjunction with the 

GPR data to inform the interpretation of radar profiles. Two pre-existing sediment 

exposures within small quarries at the Morley Farm and Brampton Farm sites (Fig. 2B) 

were logged in the field as scaled section sketches. Grain size, sedimentary structure, 
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bedding contacts, and evidence for deformation were recorded at each site. 

Sedimentary units were identified using the lithofacies codes of Evans and Benn 

(2004). Structural measurements (strike/dip) were taken to characterise the trend of 

bedding and faults. Additional sedimentological data presented by Livingstone et al. 

(2010a), based on sediment exposures in quarries and a number of borehole logs, 

provided further insight into the wider sedimentary composition and stratigraphy of the 

kame belt. 

 

GPR data acquisition and processing 

GPR survey lines were collected using a Mala 100 MHz unshielded Rough Terrain 

Antenna (RTA). Survey lines were collected at an even walking pace, with traces 

collected every 0.25 s and stacked automatically using the autostacks setting. The 

topography and length of survey lines were recorded simultaneously using a TopCon 

differential GPS. An effort was made to avoid objects (e.g. trees, fences, walls) that 

could introduce noise to the surveys, although this was often unavoidable towards the 

start and end of lines due to the constraints of working in fields. GPR data processing 

was conducted in Sandmeier ReflexW software, with trace interpolations and 

topographic corrections performed in Mathworks MATLAB software. All profiles 

followed the same generic processing sequence. Prior to interpolation, spurious 

frequency content in the profiles was removed using dewow and bandpass filters, with 

frequencies outside of the bandwidth 40-120 MHz suppressed. Trace first-breaks were 

then corrected to 6.7 ns, the travel-time of the direct airwave across the 2 m 

transmitter-receiver offset in the 100 MHz RTA, before profiles were exported to 

MATLAB. Since trace acquisition in the profiles was triggered at a fixed time interval, 
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the distance interval between traces depends on the tow speed and can vary along 

and between profiles. It must therefore be regularised before any spatial processing 

step (e.g. migration) can be applied. In raw data, excluding static traces, the mean 

trace interval is 0.29 ± 0.05 m. A 2D linear interpolation algorithm was applied to 

regularise the trace interval to 0.25 m, with the time sampling interval also interpolated 

from the raw value of 0.9674 ns to a more convenient 1 ns.  Regularised data were 

reimported to ReflexW for Kirchhoff migration, which assumed a velocity of 0.12 m/ns 

(measured from sparse diffraction hyperbolae in the record, given the inability to 

perform common midpoint surveys with the RTA) and an aperture of 12 m.  Horizontal 

striping was suppressed using a 2D subtracting-average filter, spanning a 4 m trace 

range, and amplitudes were boosted using a 75 ns automatic gain control window.  

Depth conversion and topographic corrections were applied to the migrated data in 

MATLAB, again assuming a velocity of 0.12 m/ns, with the reference datum being the 

highest elevation point in the profile (or in the group of intersecting profiles). Finally, 

fully-processed profiles were imported into Schlumberger Petrel software for 

visualisation. 

 

Results and interpretation 

Geomorphology  

We mapped over 400 ridges and mounds across the Brampton Kame Belt (Fig. 2), 

substantially adding to the original mapping of Livingstone et al. (2010a). Ridges 

display a wide range of morphologies, dimensions and orientations. We also mapped 

a number of rounded mounds with no discernible crest lines or orientation. The largest 

ridge is the Brampton ridge in the north of the kame belt (BR in Fig. 2B), which is 



  
 
 Accepted 26th June 2019 for publication in Earth Surface Processes and Landforms  

8 
 

straight, single-crested, ~3 km long, ~300 m wide and reaches a height of ~50 m above 

the surrounding terrain. Several other ridges are up to ~2 km in length, but the majority 

are shorter (mean ridge crest length = 227 m, n = 439) and <20 m high. Ridge 

morphology ranges from straight to sinuous. Ridges are generally single-crested, but 

there are some notable multi-branched morphologies (e.g. the large ridge at Carlatton 

Farm), and others with multiple crests caused by channel dissection transverse to the 

main ridge alignment (Fig. 2). Ridge orientation varies across the kame belt. In the 

south, ridges are generally aligned SE-NW and SW-NE, transitioning to S-N in the 

central part of the kame belt. Towards the north, the ridges return to a SW-NE 

alignment leading to W-E where the kame belt trends towards the Tyne Gap (Fig. 2B). 

Ridges are interpreted as eskers originating from sub-, en- and supraglacial channels 

(e.g. Woodworth, 1894; Flint, 1928b, 1930; Mannerfelt, 1945; Lewis, 1949; Brennand, 

1994; Warren and Ashley, 1994; Livingstone et al., 2010a).  

 Flat-topped hills are raised features reaching a height of ~20 m above the 

surrounding terrain, with clearly identifiable flat upper surfaces. The largest flat-topped 

hills are ~1 km wide and are generally grouped together in a ~2 km wide, 7 km long 

zone in the central part of the kame belt (Fig. 2B). Esker ridges are closely associated 

with flat-topped hills in a number of places. In some instances, ridges transition into 

flat-topped hills and appear to be partially buried by them (e.g. immediately south of 

North Scales); elsewhere ridges are superimposed on the surface of flat-topped hills. 

Flat-topped hills are interpreted as ice-walled lake plains (e.g. Cook, 1946; Winters, 

1961; Clayton, 1967; Clayton and Cherry, 1967; Huddart, 1981; Clayton et al., 2001, 

2008; Johnson and Clayton, 2003; Livingstone et al., 2010a; Curry and Petras, 2011; 

Stanley and Schaetzl, 2011).  
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Depressions are distributed throughout the kame belt (Fig. 2B), ranging in size 

from Talkin Tarn (~500 m wide, ~700 m long) to small (<20 m wide), circular 

depressions. The densest cluster of depressions is in the southern and central part of 

the kame belt, giving a pockmarked appearance to the terrain (Livingstone et al., 

2010a). Depressions are often located between closely-spaced esker ridges and, in 

places, cut into them (Fig. 2B). The majority (72%) of the depressions are dry, with 

only 12 containing water at the time they were mapped. The depressions are 

interpreted as kettles (e.g. Trotter, 1929; Maizels, 1977; Livingstone et al., 2010a). 

Whether a kettle is currently dry or is water-filled is likely controlled by its position 

relative to the water table and the connectivity to the groundwater system (e.g. Cook, 

1946; Gerke et al., 2010; Levy et al., 2015; Lischeid et al., 2017; Kayler et al., 2018). 

The kame belt contains several channels, ranging from continuous channels 

that form part of an extended regional meltwater system, to shorter channel fragments 

(Fig. 2B). A parallel series of SE-NW aligned channels that enter the kame belt at its 

south-eastern edge form part of a major meltwater system that extends for ~50 km 

along the western flank of the Pennine escarpment (Trotter, 1929; Arthurton and 

Wadge, 1981; Greenwood et al., 2007; Livingstone et al., 2008, 2010a). Meltwater 

channels within the kame belt are typically shorter than those outside its limits, and 

are often routed around the edges of, or between, closely-spaced landforms. In 

several places, meltwater channels dissect landforms (e.g. a large esker ridge 

immediately west of Talkin Tarn, and an ice-walled lake plain ~2 km to the south-west 

of this ridge) (Fig. 2B). The drainage direction of meltwater channels within the kame 

belt is variable. 

 

Sedimentology and GPR lines 
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We investigated two sediment exposures and collected seven GPR survey lines 

totalling ~2 km from esker ridges and ice-walled lake plains at four sites located in the 

south of the kame belt (Figs. 2B and 3). Intersecting lines were collected across 

landforms (e.g. parallel and perpendicular to ridge crest lines) at two sites in order to 

provide an insight into their 3D architecture (Fig. 3). Seven common radar facies (RF1-

RF7) were identified from the profiles (Fig. 4). Where possible, these have been 

interpreted based on the two sites where GPR lines were acquired immediately above 

logged sediment sections to provide a tie between sediment and radar facies. These 

interpretations have then been used to guide the analysis of sites with only GPR data. 

 

Morley Farm 

The Morley Farm section (Fig. 5) is located in the south-west of the kame belt within 

a small quarry excavated into the south-west end of a S-N oriented esker ridge. The 

ridge forms part of a discontinuous series of four ridges interspersed with small 

depressions (Figs. 2, 3A and 5C). The ~8 m high ridge that the section is excavated 

into is relatively straight, ~500 m long, and ~150 m wide at its widest, narrowing 

significantly at its northern end to <30 m. The section is ~12 m long and comprises up 

to 6 m of gently dipping to horizontal beds of sand (Sh, Sm, Sp) and some fine gravel 

(GRm). This includes sequences of horizontally laminated and massive fine to coarse 

sand, with occasional cross-stratification, fining upwards and outsized gravel clasts. 

Beds are <0.5 m thick and form gently inclined troughs and crests, widening slightly 

towards the trough bottom and thinning towards the crest. In general, the bedding 

surfaces appear laterally continuous. Towards the centre of the exposure, bedding 

within an onlapping trough truncates the underlying bed. The entire section is 

overprinted by a series of cross-cutting sand-filled veins that bifurcate in a downwards 
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direction. Differential weathering indicates that the veins are composed of finer 

sediments compared to the surrounding beds. At the macro-scale, these in-filled veins 

do not appear to displace the surrounding bedding. Some of the veins can be traced 

all the way through the section, but the majority are more discontinuous. The cross-

cutting veins are most common in the lower beds, and the veins become more parallel 

in the upper part of the section. 

The fine- to coarse-grained sandy lithofacies at Morley Farm indicate deposition 

in a low energy fluvial environment characterised by variations in flow velocity. The 

dominance of horizontally laminated sand records planar bed flow in lower and/or 

upper flow regimes (Miall, 1977, 1985; Allen, 1984), with rarer periods of dune 

migration recorded by tabular cross-beds. Massive fine-coarse sand beds record 

suspension settling or high sediment concentration density underflows (e.g. Rust and 

Romanelli, 1975; Paterson and Cheel, 1997). Granule gravel beds indicate higher 

energy flows, while truncation of the larger-scale onlapping troughs may be associated 

with channel migration over time (Gorrell and Shaw, 1991). The cross-cutting veins 

are interpreted as a conjugate set of sand-filled fractures (Lee et al., 2015). The 

pervasiveness of the fractures throughout the section, and their cross-cutting 

relationship with the horizontal to cross-laminated sand beds, indicates that formation 

of these fractures post-date deposition of the sand beds. Such fracture sets can be 

formed by hydrofracturing, or by vertical compression, perhaps due to either loading 

of ice or simply the overlying weight of a thick sediment sequence. In the case of 

vertical compression, the extensional fractures create a void space that can then be 

exploited by water escape in the form of liquefaction and injection of sediments to 

produce the sand-filled fractures (Lee et al., 2015). 
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GPR line 188 (Fig. 5D) was collected from above the Morley Farm section (with 

~2-5 m offset) and extends for 150 m across the full width of the ridge (Fig. 5C). The 

first ~10-12 m of the line, which coincides with the sediment section, contains strong 

sub-horizontal reflectors (RF1 in Fig. 5D), and similar reflectors are found in several 

places across the profile, including beneath the ridge crest at ~50 m and on the south-

eastern flank (Fig. 5D). We interpret these as bedded sands, based on the similar sub-

horizontal layering of the reflectors and the sands exposed in the section. A series of 

trough-shaped reflectors can also be identified across the profile (e.g. RF6 in Fig. 5D). 

These are of a similar scale (~5-10 m across) to the shallow trough seen in the 

sediment section (Fig. 5B), suggesting a common origin relating to continued 

sedimentation within a migrating channel system. We note that these features are also 

similar to channel fills identified in GPR profiles by other studies (e.g. Russell et al., 

2001; Winsemann et al., 2018). Sub-horizontal reflectors towards the top of the ridge 

crest have a more discontinuous, in places disorganised, arrangement (e.g. RF2 in 

Fig. 5D). This implies that the top of the esker ridge is composed of sediment of a 

different texture, such as gravel layers (see also similar packages associated with 

gravels at Brampton Farm, below and Fig. 6). It is also possible that the disorganised 

reflectors are evidence for deformed sediment packages (e.g. Fiore et al., 2002). 

 

Brampton Farm 

The Brampton Farm section (Fig. 6A) is located within a small quarry excavated into 

the southern flank of a ~10 m high double-branched esker ridge in the south-east of 

the kame belt (Figs. 2 and 3A). The western end of the section is located at the point 

where the ridge bifurcates, with the section aligned sub-parallel to the W-E oriented 
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crest line of the southern branch and extending for ~70 m along its total length of ~150 

m (Fig. 6B). The northern branch of the ridge is aligned SW-NE for the first ~100 m 

after the bifurcation, before curving to the east to become parallel to the southern 

branch. To the north of the branched ridge there are four parallel S-N aligned esker 

ridges (Fig. 3B), which mark the start of a discontinuous series of similarly oriented 

ridges that can be traced for ~4 km into the central part of the kame belt (Fig. 2B). The 

sediment section (Fig. 6A) comprises a thick (up to 10 m), heavily deformed sequence 

of interbedded rippled (type-A and -B) and sub-horizontally laminated sands (Sr, Sh), 

and massive to crudely-bedded clast and matrix-supported gravels (Gm, Gms, Gh). 

The sands contain frequent interbeds of granule gravel to pebbles (often one clast 

thick). The western end of the exposure has the greatest thickness of sands (>8 m), 

with the succession comprising steeply dipping (34°) bedded sands trending towards 

the south, unconformably overlain by gently dipping sands trending eastwards. The 

top of the section is incised by a ~5 m wide channel fill of trough-stratified sands and 

gravel. Tabular sheets, up to several metres thick, of crudely stratified to massive 

matrix- and clast-supported gravels ranging in size from cobbles to granule gravel and 

with sharp or erosional lower contacts become more prevalent towards the central and 

eastern ends of the section. There are occasional imbricated clast clusters, while 

stratification is imparted by the crude alignment of clasts and variations in matrix 

concentration and clast size. The gravels contain frequent deformed soft-sediment 

rafts (Sd) of massive and bedded sand. Clast forms are predominantly rounded to sub-

rounded and comprise a mix of lithologies, including Borrowdale Volcanic lavas and 

Permo-Triassic sandstone. Deformation is pervasive, with the most extensive 

evidence along the western side (Fig. 6A-C). This includes widespread normal faulting 

with dips towards the north-east and south, convolute bedding, open fold structures 
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and clastic dykes. The largest clastic dyke is up to 1 m wide, cuts through the upper 

gravel bed at the eastern end of the exposure and comprises vertically-aligned 

laminated fine sand/silt (Fig. 6F). The dyke has deformed edges, tapers slightly 

downwards and has a sub-horizontal offshoot extending diagonally upwards off the 

main body.   

Alternating gravels and sands at Brampton Farm sediment section record a 

dynamic fluvial environment, characterised by significant fluctuations in flow velocity 

and sediment supply (e.g. Banerjee and MacDonald, 1975; Ringrose, 1982; Brennand, 

1994).  Low energy conditions are recorded by ripples deposited in the lower flow 

regime (Jopling and Walker, 1968) and laminated sands that demonstrate planar bed 

flow in lower and/or upper flow regime conditions (Flint, 1930; Miall, 1977, 1985; Allen, 

1984). The general trend of palaeocurrent directions revealed by the ripples suggest 

that water flow was northwards. The gravels are interpreted to have been deposited 

by powerful fluidal flows, with traction transport dominating where gravels are 

imbricated, crudely stratified, and clast supported (Brennand, 1994). The crude 

stratification, reflecting subtle sorting, is likely imparted by pulses in flow strength 

(Mäkinen, 2003). Isolated patches of openwork gravels likely represent winnowing of 

finer-grained material (Lundqvist, 1979; Shulmeister, 1989), whereas matrix-

supported massive gravels indicate hyperconcentrated flood flow deposits 

(Saunderson, 1977; Shulmeister, 1989). Further evidence for high energy flows is 

provided by the soft-sediment rafts, ripped up from underlying beds or derived from 

bank collapses. The entire section has been heavily deformed, with the prevalence of 

normal faulting indicative of gravitational failure, possibly due to the removal of 

supporting ice walls (e.g. Flint, 1930; McDonald and Shilts, 1975; Brennand, 2000; 

Fiore et al., 2002), and (sub-)vertical clastic dykes (Fig. 6F) recording hydrofracture 
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during periods of high water content and hydrostatic pressure (e.g. Rijsdijk et al., 1999; 

van der Meer et al., 2009; Phillips and Hughes, 2014).  

GPR line 195 (Fig. 6G) is 90 m long and was collected above and adjacent 

(with ~2-5 m offset) to the Brampton Farm section, which provides an exposure for 

~75 m of the GPR line (Fig. 6B). This large overlap allows a number of features to be 

tied between the section and the radar data. The lower part of the profile, particularly 

in the central and eastern end (Fig. 6G), is largely composed of strong sub-horizontal 

reflectors (RF1), interpreted as bedded sands. These areas are consistent with the 

horizontally bedded sands (Sh, Sr) seen in the sediment section (Fig. 6A) and at 

Morley Farm (Fig. 5). Gently dipping reflectors in the centre of the profile (RF3) 

downlap onto well-defined, continuous sub-horizontal reflectors of RF1, consistent 

with the dip of the bedded sand (Sh) layer seen in the section to the west of the area 

of slumping. Fainter, more-discontinuous sub-horizontal reflectors (RF2) overlaying 

RF1 correspond closely to gravel layers (Gh, Gm) seen in the centre and eastern end 

of the section, suggesting these are sub-horizontally deposited gravel sheets (Fig. 

6G). The western end of the sediment section is deformed, with a number of faults 

visible (Figs. 6A and 6D). The GPR profile in this area of faulting contains several 

linear features that appear to offset layered reflectors, but these could be radar 

artefacts rather than the imaging of faults by the radar data. No features matching the 

hydrofracture at the eastern end of the sediment section (Figs. 6A and 6F) could be 

identified from the GPR profile.    

 

Carlatton Farm 

Two intersecting GPR lines were acquired from close to the crest line of a 1000 m 

long, 250 m wide, ~12 m high S-N orientated multi-branched esker ridge in the south-
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west of the kame belt (Figs. 2B, 3A and 7A). Line 150 (Fig. 7C) is a 140 m long cross 

profile running perpendicular to (and crossing) the ridge crest line (Figs. 3A, 7A and 

7B). Line 155 (Fig. 7D) is a long profile that intersects with line 150 at approximately 

the ridge crest line before extending ~250 m to the north-west, following a subtle sub-

ridge aligned sub-parallel to the main ridge crest line (Figs. 7A and 7B). Areas of 

strong, quasi-continuous, wavy sub-horizontal reflectors (RF1) are found in the lower 

part of both profiles. This suggests a ridge core composed of bedded sands (Figs. 7C 

and 7D), which, coupled with the morphology of the ridge, is indicative of planar flow 

and vertical accretion in an ice-walled channel. Northwards-dipping reflectors (RF3) at 

the S end of line 155 suggest downflow accretion of sediments within the esker ridge. 

Areas of discontinuous sub-horizontal reflectors (e.g. RF2 in Figs. 7C and 7D) may 

represent deposition of coarser sediment, such as gravel, as seen in the Morley and 

Brampton Farm profiles (Figs. 5D and 6G). Discontinuous sub-horizontal and wavy 

reflectors, in places dipping gently southwards, with a hummocky upper surface that 

mimics the underlying reflectors (RF5), can be identified in line 155. These are 

consistent with ridge-scale sediment macroforms associated with a dynamic 

depositional environment (Brennand, 1994; Burke et al., 2015). The dip direction of 

some reflectors in this zone is opposite to the general northwards drainage trend, 

indicating that these are shallow backsets related to headward accretion on the stoss-

side of the sediment macroform in a channel (e.g. Miall, 1985; Fiore et al., 2002; Heinz 

and Aigner, 2003; Burke et al., 2008). The transition from northwards dipping reflectors 

at the southern end of the long profile, to shallow backsets overlying sub-horizontal 

bedded sands, with a series of clearly defined boundaries, at the northern end, is 

indicative of multiple phases of accretion and changes in flow conditions within the 

esker ridge, characterised by significant lateral variation in the radar facies. Line 155 
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also contains a series of high-angle, disrupted reflectors in the central and uppermost 

part of the profile (RF7 in Fig. 7D). We interpret this as possible evidence for post-

depositional deformation resulting from collapse due to ice melt out/removal of ice 

walls during deglaciation (e.g. Flint, 1930; Holmes, 1947; McDonald and Shilts, 1975; 

Brennand, 2000; Fiore et al., 2002; Livingstone et al., 2010a). This is consistent with 

the geomorphological context, as RF7 is located close to a small (30 m wide) kettle on 

top of the ridge (Fig. 7A).       

 

North Scales 

Three intersecting lines up to 500 m in length were collected across the southern end 

of a ~20 m high ice-walled lake plain, close to the point where a SW-NE oriented esker 

ridge meets the hill (Figs. 3A, 8A and 8B). The bottom radar facies in line 159 

comprises strong, undulating reflectors with a hummocky surface up to 6 m thick (e.g. 

RF5 in Fig. 8C). These are overlain by discontinuous dipping reflectors (e.g. RF3 in 

Fig. 8C) that in places fill troughs in the underlying hummocky surface and tend to 

thicken from <2 m to >5 m towards the north-west. The RF5 hummocky reflectors (e.g. 

Fig. 8C, lower panel), also found at Carlatton Farm (Fig. 7D), are consistent with ridge-

scale esker macroforms (Brennand, 1994; Burke et al., 2015). The discontinuous 

dipping reflectors that overlay the hummocky surface are interpreted as foresets 

(Russell et al., 2001; Woodward and Burke, 2007; Clayton et al., 2008; Winsemann et 

al., 2018), indicating north-west drainage and sediment progradation into a water body 

based on the orientation of dip. Sediment infilling of the >5 m deep water body (based 

on thickness of the foreset structures) has resulted in the formation of the flat-topped 

surface. Clear downlapping boundaries (RF3 in Fig. 8C) record multiple phases of 
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accretion and sediment deposition. To the north-west end of the line there are areas 

of discontinuous, disrupted reflectors (e.g. RF7 in Fig. 8C) that are interpreted as 

potential evidence of deformation due to removal of lateral ice support leading to 

sediment collapse (e.g. Holmes, 1947; Fiore et al., 2002; Johnson and Clayton, 2003; 

Clayton et al., 2008; Burke et al., 2015).  

The lowermost radar facies in line 161, which is 5 m thick, consists of strong-

sub-horizontal to wavy reflectors (RF1 in Fig. 8D), which are interpreted as vertically-

accreted bedded sands (i.e. esker deposits associated with a continuation of the ridge 

located to the south of the ice-walled lake plain). These are overlain by a series of 

reflectors dipping to the south-west (RF3 in Fig. 8D) that are restricted to the stoss 

(south-west) side of the ice-walled lake plain and are up to ~2 m thick, and are in turn 

overlain by faint, often discontinuous sub-horizontal reflectors with a thickness of ~2 

m (RF4 in Fig. 8D). At the north-east end of the profile, the hummocky radar surface 

(RF5) is draped by discontinuous reflectors that mimic the underlying hummocks (RF4 

in Fig. 8D). The draped reflectors are consistent with fine-grained glaciolacustrine 

sedimentation (topsets) that has buried underlying glaciofluvial deposits. Line 161 also 

contains a large trough structure at its south-west end (RF6 in Fig. 8D), suggesting 

the presence of a large channel towards the margin of the ice-walled lake that was 

buried by subsequent lake infill. 

Line 166 contains similar features to those seen in lines 159 and 161. This 

includes strong sub-horizontal reflectors (e.g. RF1 in Fig. 8E) interpreted as bedded 

sands laid down as esker deposits; dipping reflectors (RF3 in Fig. 8E) interpreted as 

foresets and indicating northwards sediment progradation into a lake environment; and 

an uppermost series of faint sub-horizontal reflectors (e.g. RF4 in Fig. 8E) consistent 

with deltaic topsets. There appear to be at least two phases of foreset deposition, with 
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the lowermost foresets contiguous with the bedded sands, followed by a second set 

of foresets that in places infill the hummocky surface. This suggests formation was 

characterised by an initial phase of esker formation indicative of vertical accretion (RF1 

and RF5), which terminated in a lake forming a subaqueous fan (lower RF3 unit) 

indicative of more complex horizontal accretion, followed by expansion of the lake, 

and subsequent infilling and burial of the esker and lower fan by a prograding delta 

(upper RF3 unit and RF4). 

 RF3 dipping reflectors are found in all three lines at North Scales and display a 

range of dip directions from south-west to north. The south-west dipping RF3 reflectors 

in line 166 contrast to the north-west and north dipping RF3 (interpreted as delta or 

subaqueous fan foresets) in lines 159 and 166, respectively, and the overall 

northwards trend of drainage within the kame belt (Huddart, 1981; Livingstone et al., 

2010a). There are two possible explanations for this apparent broad range in dip 

directions. RF3 reflectors in line 161 are consistent with backsets, indicating headward 

accretion on the stoss-side of the sediment macroform at a hydraulic jump during high-

energy water flows (e.g. Fiore et al., 2002; Burke et al., 2008; Winsemann et al., 2018). 

Alternatively, they could represent foreset deposition in a heavily splayed subaqueous 

fan/prograding delta, with foreset dip orientation ranging from south-west to north. This 

would suggest a stream input from the south-east of the ice-walled lake plain. Of these 

alternatives, we favour the interpretation of RF3 in line 161 as backsets based on their 

restriction to the stoss side of the ice-walled lake plain, in close proximity to the likely 

entrance point to the lake of an outflow channel (as indicated by the esker ridge to the 

south and the evidence for buried esker deposits within the ice-walled lake plain). 

However, it is also possible that they relate to a large, splayed subaqueous fan feature 

burying the initial phases of esker sedimentation.    
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Discussion 

Process-form relationships of landforms within complex kame belts   

Our interpretation of the North Scales radar data provides a conceptual model for 

progressive phases of sedimentation during ice-walled lake-plain formation (Fig. 9), 

building on existing models (e.g. Winters, 1961; Clayton and Cherry, 1967; Johnson 

and Clayton, 2003; Clayton et al., 2008; Livingstone et al., 2010a,c). The model shows 

evolution from initial subglacial esker sedimentation to subaqueous fan deposition into 

a lake following channel collapse and the development of glacier karst (e.g. Flint, 1930; 

Holmes, 1947; Lewis, 1949; Clayton, 1964; Evans et al., 2018), followed by a final 

phase of lake and delta infill. The identified radar facies suggest initial glaciofluvial 

deposition within ice-walled channels, as shown in all three profiles by the lowermost 

units of bedded sands (RF1) and the ridge-scale hummocky sub-horizontal reflectors 

(RF5) indicating subglacial esker formation as a series of macroforms (Fig. 8). This 

glaciofluvial sedimentation is likely to be connected to the ridge located immediately 

south of the ice-walled lake plain (Fig. 8A). The northwards dipping lower RF3 unit in 

line 166 is contiguous with the esker sedimentation, suggesting a switch from channel 

sedimentation to subaqueous fan deposits as the lake begins to form during the initial 

stages of glacier karst development (Fig. 9C). The south-west dipping reflectors (RF3) 

in Fig. 8D are likely to be backsets and indicate a high energy hydraulic system 

consistent with a subglacial channel entering an ice-marginal lake (e.g. Flint, 1930) 

(Fig. 9D). The backsets are confined to the south and south-west side of the flat-

topped hill, closest to the likely input points based on the northwards-draining 

meltwater system (e.g. Fig. 2B). This sequence suggests higher energy flows to the 

south-west of the ice-walled lake, transitioning to distal lower energy deposition to the 
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north-east and the centre of the lake. However, south-west dipping reflectors may 

alternatively record a heavily-splayed subaqueous fan fed by a stream input at the 

south-east margin of the lake. Subaqueous fan deposits have been identified in other 

ice-walled lake plain studies based on the presence of gravelly rim-ridges surrounding 

the flat-topped hill (e.g. Winters, 1961; Clayton and Cherry, 1967; Johnson and 

Clayton, 2003; Clayton et al., 2008). The lake continued to evolve and infill, with the 

northwards-dipping reflectors interpreted as delta foresets (RF3) indicating that lake 

infill was primarily a result of rapid fan/delta progradation, burying the early phases of 

esker sedimentation (Fig. 9D). The stacked units (e.g. northern end of line 166) (Fig. 

8E) indicate multiple pulses of rapid sediment deposition relating to the continued 

downwasting of ice, changing stream inputs and expansion of the lake. The final stage 

of lake infill is represented by the uppermost faint sub-horizontal reflectors (RF4), 

interpreted as draped lake deposits and topsets (Fig. 9E). These are located towards 

the central part of the ice-walled lake plain, consistent with the deepest parts of the 

lake (Clayton and Cherry, 1967; Clayton et al., 2008). The relative lack of fine-grained 

lake deposits, common in other ice-walled lake plains (e.g. Winters, 1961; Clayton and 

Cherry, 1967; Johnson and Clayton, 2003; Clayton et al., 2008), suggests that lake 

progradation and infilling may have been rapid. Subsequent de-icing and removal of 

ice walls then revealed an upstanding ice-walled lake plain, with sediment collapse 

likely towards the flanks (e.g. Holmes, 1947; Winters, 1961; Brodzikowski and van 

Loon, 1991; Huddart, 1981; Clayton et al., 2001, 2008; Johnson and Clayton, 2003; 

Livingstone et al., 2010a) (Fig. 9F). 

The sedimentological and radar data from the esker ridges investigated at the 

Morley, Brampton and Carlatton Farm sites highlight significant variations in flow 

conditions. The Morley Farm esker ridge sediment and radar facies indicate low 
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energy flows, characterised by planar bedded sands and shallow trough features, with 

little apparent variation in flow conditions evident in the ridge cross-profiles (Fig. 5). By 

contrast, the Brampton Farm section (Fig. 6A) contains variations in grain sizes 

(bedded sands to gravel sheets) and evidence of significant deformation. Faulting (e.g. 

Fig. 6D) is consistent with gravitational deformation indicative of sediment pile let-

down or removal of supporting ice walls (e.g. McDonald and Shilts, 1975; Brennand, 

2000; Fiore et al., 2002; Livingstone et al., 2010a), and hydrofracturing (e.g. Fig. 6F) 

indicates fluctuating water pressures (e.g. Lee et al., 2015). The Carlatton Farm GPR 

long-profile (Fig. 7B) shows evidence of multiple phases of sediment accretion, 

recording changes in flow conditions both vertically within the ridge and laterally across 

the long-profile. We suggest the identified variations in flow conditions recorded by the 

sediment and GPR data are also consistent with differences in overall esker ridge 

morphologies (e.g. Burke et al. 2015) and their context within the kame belt. Both the 

Morley and Carlatton Farm sites are within large S-N aligned ridges that form part of 

a consistent esker ridge network extending northwards through the kame belt (Fig. 

2B). We suggest these ridges record stable meltwater drainage routes, characterised 

by both largely homogenous sedimentation in cross-profile (e.g. Figs. 5 and 7C) and 

multiple phases of accretion evident along-section. The greater variation in flow 

conditions recorded in the Carlatton Farm profiles is likely to reflect the complex 

morphology of the esker ridge (i.e. multiple ridge crests and branches leading off the 

main ridge; Fig. 7A) compared to Morley Farm (Fig. 5C). The Brampton Farm ridges 

are smaller and form part of a more-fragmented system aligned broadly SW-NE (Figs. 

2B and 3B). Variation in grain size, evidence for fluctuating water pressures 

(hydrofracture) and hyperconcentrated flows, indicate availability of large sediment 

volumes and rapid ridge formation (Fiore et al., 2002; Mäkinen, 2003). Evidence for 
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faulting suggests that the channel system subsequently underwent significant 

modification during dead ice melt out as supporting ice-walls were removed, consistent 

with englacial or supraglacial deposition (e.g. Lewis, 1949; Huddart, 1981; Burke et 

al., 2008) and/or formation in an ice-marginal position (e.g. Storrar et al., in revision).  

 

Evolution of complex kame belts during deglaciation 

Two types of drainage network can be identified within the Brampton Kame Belt, 

providing insight into the formation of kame belts as glacier karst evolves during 

deglaciation. These are (1) major stable drainage axes that collapsed into a chain of 

ice-walled lakes as glacier karst develops; and (2) fragmentary ice-marginal esker 

ridges that formed at or close to the margin between active glacier ice and ice 

stagnation terrain during recession south-east along the Vale of Eden (Fig. 10). 

 We suggest that the broadly S-N and SE-NW aligned esker ridges in the south 

and central parts of the kame belt, trending to SW-NE in the north, record major 

meltwater drainage axes in this part of the ice sheet (Fig. 10). These esker ridges are 

consistent with a continuation of the meltwater channel system that extends for tens 

of kilometres along the western side of the Pennine escarpment (Arthurton & Wadge, 

1981; Greenwood et al., 2007; Livingstone et al., 2008, 2010a). The largest esker 

ridges within the kame belt, including the Brampton ridge (Fig. 2B), follow this general 

alignment, and therefore their size is likely a function both of the stability of the 

drainage network and the focusing of sediment and water down these axes. The 

internal data from the Morley Farm and Carlatton Farm esker ridges (Figs. 5 and 7) 

show multiple phases of accretion and a lack of pervasive deformation, consistent with 

a subglacial drainage network. We propose that evolution and continued downwasting 
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of major subglacial drainage axes during deglaciation led to the formation of a series 

of aligned ice-walled lakes within a well-developed and stable glacier karst system, as 

supported by the linear distribution of ice-walled lake plains within the kame belt (e.g. 

Holmes, 1947) (Figs. 2B and 10A). We suggest this is analogous to the linear chains 

of supraglacial ponds observed on the debris-covered tongue of Tasman Glacier, New 

Zealand (Röhl, 2008) (Fig. 11A). The presence of major drainage axes initiated 

collapse of overlying ice (unroofing), causing a drainage reorganisation and localised 

ponding of water where channels became blocked by dead ice and debris within the 

glacier karst. As the ice continued to stagnate and the glacier karst expanded and 

stabilised, so did the ice-walled lakes (e.g. Holmes, 1947; Lewis, 1949; Clayton, 1964; 

Evans et al., 2018). The presence of thick (>5 m) sequences of delta foresets dipping 

northwards within the North Scales ice-walled lake plain (Fig. 8), and the evidence for 

rapid infilling of lakes (inferred from the relative lack of fine-grained lake deposits 

identified in the radar data), is consistent with major drainage axes and suggest a large 

supraglacial debris source, such as the Penrith sandstone ridge and/or the flanks of 

the Pennine escarpment (Livingstone et al., 2010a).  

A series of smaller, more-fragmentary esker ridges aligned SW-NE in the 

southern part of the kame belt are interpreted to represent deposition in channels 

running parallel to the south-east retreating ice margin up the Vale of Eden and 

towards the Stainmore Gap (Fig. 10) (Huddart, 1981; Livingstone et al., 2010a; 2015). 

A number of these ridges have complex, multi-branched morphologies, including at 

Brampton Farm (Fig. 6). The sedimentological and radar data from the Brampton Farm 

esker ridge suggest that formation was likely to have been rapid and associated with 

fluctuating water pressures and high sediment availability. Evidence for significant 

deformation is consistent with a partially englacial/supraglacial component to the 
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drainage channels and the subsequent collapse caused by ice ablation (e.g. Lewis, 

1949; Fiore et al., 2002). Eskers formed partly in englacial/supraglacial positions are 

also consistent with the fragmentary nature of the ridges in this part of the kame belt. 

Together, these observations suggest late-stage ice-marginal formation during 

deglaciation, with partial englacial and supraglacial sections to the drainage, 

contrasting with the relatively stable S-N major drainage axes (Fig. 10). The inferred 

ice-marginal eskers are consistent with observations of complex polyphase esker 

systems formed on modern glacier forelands, some of which mimic the shape of the 

ice margin in addition to the flow-parallel orientation typically associated with eskers 

(Fig. 11B) (e.g. Storrar et al., in revision). Ice-marginal eskers form where meltwater 

supply and sedimentation are high, channel abandonment and drainage network 

reorganisation are frequent and dynamic (e.g. Trotter, 1929; Lewis, 1949; Huddart, 

1981), and where the glacier front consists of a defined margin between active glacier 

ice and ice stagnation terrain (Storrar et al., in revision). We therefore suggest the ice-

marginal eskers within the Brampton Kame Belt were formed as water drained from 

active ice onto the dead ice zone.  

 

GPR as a tool for investigating kame belt stratigraphy and architecture 

The GPR profiles provided good insight into the internal structure of landforms within 

the kame belt, in accordance with previous work in modern and ancient glaciofluvial 

environments (e.g. Russell et al., 2001; Fiore et al., 2002; Cassidy et al., 2003; Burke 

et al., 2008, 2015; Winsemann et al., 2018). In particular, the 100 MHz GPR data were 

effective at capturing broad scale architectural elements, including vertical and lateral 

variations in styles of sediment accretion (e.g. lateral, headward, downflow or vertical 
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accretion), and the morphology of boundaries and contacts (e.g. troughs, hummocky 

surfaces).  We also used the GPR data to identify changes in grain size (e.g. bedded 

sands versus gravel sheets) and depositional structures (e.g. planar, cross-bedded), 

but in these cases it was important to have sedimentary sections that acted as tie 

points to identify key radar facies (e.g. Fig. 4). The wider geomorphological and 

sedimentological context of a site is also important when interpreting radar facies. For 

instance, at North Scales (Fig. 8), we suggest dipping reflectors are likely to be 

backsets in some profiles (as opposed to foresets) because the dip direction of the 

reflectors was opposite to the general S-N/SW-NE trend of meltwater drainage (cf. 

Fiore et al., 2002; Burke et al., 2008). The GPR data were not effective for identifying 

individual features, such as hydrofracturing or faulting, even where this was shown to 

be significant within a sedimentary section (e.g. Fig. 6). The difficulty in picking out 

finer scale detail may be due to artefacts/noise in the GPR data (e.g. reflectors from 

trees, fences etc.). The use of a radar system with shielded antenna could be one way 

to try and improve this in future surveys. Finally, wherever possible, we advocate a 

combined geomorphological, sedimentological and geophysical approach to the study 

of complex glaciofluvial sediment-landform assemblages. 

 

Conclusions 

Our combined geomorphological, sedimentological and geophysical investigation 

provides a new assessment of the morphology and internal stratigraphy and 

architecture of the Brampton Kame Belt. We present a conceptual model for the 

formation of ice-walled lake plains based on our interpretation of GPR profiles, building 

on and adding to the body of existing work on this topic. The process-form model 

suggests that major drainage pathways collapse into a chain of ice-walled lakes as 
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glacier karst develops during deglaciation. Sediment and GPR data demonstrate 

significant variation in esker ridge internal structure, indicating differences in flow 

conditions, styles of accretion, and degree of deformation that can be linked to 

observed differences in ridge morphologies. The morphology, orientation and internal 

structure of esker ridges and ice-walled lake plains allow two main styles of drainage 

to be identified within the kame belt: (1) major drainage axes broadly oriented S-N that 

collapsed to form a series of aligned ice-walled lakes during the development of 

relatively stable glacier karst; and (2) ice-marginal drainage systems oriented SW-NE 

that formed parallel to the margin between active glacier ice and ice stagnation terrain 

as the ice sheet downwasted and retreated to the south-east during deglaciation. 

These esker ridges are likely to have formed rapidly and undergone significant 

modification during dead ice melt out. Our study demonstrates that GPR data provides 

good insight into the broad scale internal stratigraphy and architecture of landforms in 

complex kame belts, including variations in accretion styles and boundary morphology. 

However, sediment exposures are important to help tie sediments to radar facies and 

to validate interpretations.  
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Figure 8 – GPR lines 159, 161 and 166 collected from North Scales ice-walled lake plain. (A) DSM showing mapped ice-walled 
lake plain (in purple), esker ridges (in red), kettles (in light blue), and meltwater channels (blue lines) with location of GPR lines 159 
(green arrow), 161 (blue arrow) and 166 (red arrow). See Figs. 2B and 3A for location of site. (B) Fence diagram of lines. (C) Line 
159 and annotated interpretations. (D) Line 161 and annotated interpretations. (E) Line 166 and annotated interpretations. See text 
and Fig. 4 for reference to numbered radar facies (RF) in (C), (D) and (E).
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Figure 10 – Identification of two main styles of meltwater drainage within the Brampton Kame Belt. (A) 
Geomorphological map with identified major meltwater drainage axes oriented broadly S-N, and ice-
marginal drainage routes aligned broadly SW-NE tracing ice sheet recession to the SE. (B) Southern 
part of the kame belt highlighting the difference between major drainage axis and ice-marginal drainage 
esker ridges.
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Figure 11 – Modern analogues for the two drainage network types identified within the Brampton Kame Belt. (A) Evolution 
from 1965 to 1986 of chains of supraglacial ponds (black arrows in left panel) on the debris-covered lower tongue of 
Tasman Glacier, New Zealand. Note that the axis of the chain of ponds coincides with the outflow of a subglacial channel 
(white arrow in left panel) at the glacier front. Aerial photographs from 1965, 1973 and 1986 are accessible from Land 
Information New Zealand (www.linz.govt.nz) and are used under the Creative Commons Attribution 4.0 International 
Licence. (B) Ice-marginal eskers (white arrows) at the margin of Hørbyebreen, Svalbard (see Storrar et al., in revision). 
Black arrows show flow-parallel eskers, analogous to the major drainage axis esker ridges in Fig. 10B. Inset shows context 
of the eskers at the glacier margin. Aerial photograph from 2009 acquired from the Norwegian Polar Institute TopoSvalbard 
online archive (toposvalbard.nploar.no).
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